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ABSTRACT

An important research topic within Environmental Criminology is
the analysis of the spatio-temporal dynamics of crime. Some of
the main challenges in this area are the prediction and prevention
of criminal hot spots. This paper presents an agent-based
framework that is able to address such challenges. The framework
exploits simulation techniques to compare different strategies for
guardian movement in terms of their efficiency (low costs) and
effectiveness (high prevention rate). In addition, by automated
checks, more detailed properties of the different strategies can be
studied. As a result, the framework can be used as a tool to assist
researchers in their theory building, and potentially also policy
makers in their decision making. To illustrate the approach, a
number of strategies for guardian movement are compared, and
the results are discussed.

Categories and Subject Descriptors
1.6.3 [Simulation and Modeling]: Applications.
J.4 [Social and Behavioral Science]: Sociology.

General Terms
Experimentation, Human Factors, Verification.

Keywords
Criminal Hot Spots, Social Simulation, Formal Analysis, Crime
Prevention Strategies.

1. INTRODUCTION

Within the field of Environmental Criminology, the analysis of the
displacement of crime is one of the main research interests [8, 13,
18]. Certain types of crime typically cluster around specific
locations in a city, such as busy shopping streets (in case of pick-
pocketing) or deserted railway stations (in case of assault). Such
locations with a high concentration of criminal activities are
usually called criminal hot spots. However, these hot spots are not
always persistent over longer time periods. A number of factors
are known to cause displacement of hot spots from one location to
another. For instance, introducing television screens in a railway
station may decrease crime rates [8, 13, 18].

This dynamic nature of criminal hot spots makes them a popular
topic of scientific research. For example, typical questions that are
studied in Environmental Criminology are: Where and when do
criminal hot spots emerge? How long do they persist? And how
can they be prevented? The classical approach to investigate these
kinds of questions is to collect large numbers of empirical data
(e.g. from crime report databases), and to use analysis techniques
to identify trends in these data [16]. However, a drawback of this
approach is that it focuses on past displacement patterns, which
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does not guarantee that future patterns will be similar.

As an alternative, for a number of years, criminologists have
joined forces with researchers from Computer Science and
Artificial Intelligence, to explore the benefits of (Agent Based)
Social Simulation to investigate crime displacement. Thus, the
perspective taken in these approaches is to use a simulated
environment to predict dynamics of crime displacement in the
future, rather than to analyse past dynamics. Since simulation
permits the analyst to perform scalable social “experiments”
without much effort, it turns out to be particularly appropriate to
analyse phenomena within the criminological domain. Indeed, in
recent years, several papers have successfully tackled crimino-
logical questions using Social Simulation [1, 3,7, 11, 12, 15, 17].

As a follow up of that success, the current paper proposes an
agent-based framework to support crime prevention’. This
framework consists of two main components, namely an agent-
based simulation model for crime displacement, and a formal
analysis method to investigate (simulation) traces in more detail.
As such, it extends the existing literature in two ways. First, the
simulation model allows the analyst to define different strategies
for guardian movement, which makes it a test bed to compare
strategies against each other. Second, the use of automated formal
techniques enables the analyst to analyse large numbers of
(simulation and empirical) traces in limited time.

The paper is organised as follows. Section 2 reviews existing
approaches that aim at studying crime displacement by means of
Artificial Intelligence techniques, and positions the current paper.
In Section 3, the basic simulation model for crime displacement is
presented. Next, in Section 4, a number of crime prevention
strategies are introduced that can be used by the guardian agents
in the simulation model. Section 5 illustrates the working of this
model by means of simulations, and shows how the different
strategies perform in different circumstances. Section 6 presents
and illustrates the formal analysis method to investigate
simulation traces in more detail. Section 7 concludes the paper
with a summary and a discussion about future work.

2. RELATED WORK

Over the last decade, various computational modelling approaches
have been applied to the domain of crime displacement. A shared
element within all of these approaches is that the displacement
processes is studied as the result of the interaction between three
types of agents: criminals, guardians and passers-by. This choice
is mainly inspired by the Routine Activity Theory in Criminology
[8], which basically states that crime occurs when a motivated
offender encounters a suitable target, while no efficient guardian
is present. However, despite this common underlying principle,

" In this paper we focus explicitly on assault, although the model is
sufficiently generic to study several other types of crime as well.



there is a large variation in the modelling techniques that are used.
Some authors apply agent-based modelling [1, 3, 7, 17], whereas
others use population-based modelling [3], cellular automata [12,
15], different spatial analysis techniques [11], or evolutionary
computing techniques [17]. Due to space limitations, we will not
provide a complete comparison, but an overview is given in [14].

In addition to the differences in modelling techniques, the papers
mentioned above also show differences in the specific goals they
try to achieve. While some authors try to develop simulation
models of crime displacement in existing cities, which can be
directly related to real world data (e.g., [15]), others deliberately
abstract from empirical information (e.g., [3]). The idea behind
the latter perspective is that the simulation environment is used as
an analytical tool, mainly used by researchers and policy makers,
to shed more light on the process under investigation, and perhaps
improve existing policies (e.g., for surveillance) on the long run
[10]. Also, some authors take an intermediate point of view (e.g.,
[1]). They initially build their simulation model to study the
phenomenon per se, but define its basic concepts such that it can
be directly connected to empirical data, if these become available.

This intermediate perspective is also taken in the current paper.
More specifically, it proposes a simulation model that can be used
to compare different strategies in guardian movement in terms of
their efficiency and effectiveness, combined with a formal
analysis method to study detailed properties of the simulations.
Like other approaches in the literature, the simulation model
distinguishes three types of agents (criminals, guardians, and
passers-by). To make a comparison of strategies possible, the
behavioural rules for criminals and passers-by are almost
completely re-used from existing approaches (in particular [3]),
but the behaviour of the guardians is variable. A preliminary
investigation [2] pointed out that there are several possibilities to
improve existing guardian movement strategies. Whilst most
currently used strategies are reactive (i.e., guardians move to a
location after many crimes have been committed there), also
anticipatory strategies (i.e., guardians move to a location as soon
as they expect that many crimes will be committed there) and
hybrid strategies (i.e., combinations of reactive and anticipatory
strategies) have a strong potential. The current paper compares a
number of these strategies in terms of their efficiency (what are
the costs?) and effectiveness (how many crimes are prevented?).
This approach distinguishes the current paper from most
approaches in the literature, which mainly simulate existing
strategies instead of novel strategies. A welcome exception is
[17], but this paper addresses short term strategies (i.e., patrol
routes) rather than long term (surveillance investment) strategies.

Another element that distinguishes the current paper from existing
approaches is the use of formal techniques to analyse simulation
traces (see Section 6). This idea is similar to the approach taken in
[1], which also addresses verification of dynamic properties of
simulation traces. A difference is however that that paper
addresses properties related to the spatial patterns of displacement,
whereas we here focus on efficiency and effectiveness.

3. SIMULATION MODEL

This section introduces the simulation model for crime
displacement processes, inspired by [2, 3]. Note that agent groups
are modelled in terms of their density, i.e., at a global, population-
based level, not an individual level. This choice was made on the
basis of [3], which demonstrates that, to study crime displacement,
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population-based agent modelling can be a computationally cheap
alternative for individual-based (stochastic) agent modelling,
while still approximating the same results. Section 3.1 introduces
the main aspects of the model and their relations. Section 3.2
provides the formalisation of the model.

3.1 Crime Displacement

As mentioned in the introduction, each large city usually contains
a number of hot spots, i.e., locations where most of the crimes
occur [9, 18]. Such locations may vary from railway stations to
shopping malls. These hot spots usually have several things in
common, among which the presence of many passers-by (which
makes the location attractive for criminals) and the lack of
adequate surveillance. However, after a while the situation often
changes: the criminal activities shift to another location. This may
be caused by improved surveillance systems (such as cameras) at
that location, by an increased number of police officers, or
because the police changed their policy.

Another important factor in explaining crime displacement is the
reputation of specific locations in a city [13]. This reputation may
be a cause of crime displacement, as well as an effect. For
example, a location that is known for its high crime rates usually
attracts police officers [9], whereas most citizens will be more
likely to avoid it [19]. As a result, the amount of criminal activity
at such a location will decrease, which affects its reputation again.

To summarise, in order to model the process of crime
displacement, several aspects are important. First, one should have
information about the total number of agents in the different
groups involved, i.e., the number of criminals, number of
guardians, and number of passers-by. Next, it is assumed that the
world (or city) that is addressed can be represented in terms of a
number of different locations. It is important to know how many
agents of each type are present at each location: the density of
criminals, guardians, and passers-by. Furthermore, to describe the
movement of the different agents from one location to another,
information about the reputation (or attractiveness) of the
locations is needed. This attractiveness is different for each type
of agent. For example, passers-by like locations where it is safe,
e.g. locations where some guardians are present and no criminals.
On the other hand, guardians are attracted by places where a lot of
criminals are present, and criminals like locations where there are
many passers-by and no guardians. Finally, to be able to represent
the idea of hot spots, the number of assaults per location is
modelled. The idea is that more assaults take place at locations
where there are many criminals and passers-by, and few
guardians, cf. the Routine Activity Theory by [8].

The interaction between the concepts introduced above is
visualised in Figure 1%. This figure depicts the influences between
the different groups at one location. Here, the circles denote the
concepts that were mentioned above in italics, and the arrows
indicate influences between concepts (influences on attractiveness
have been drawn using dotted arrows to enhance readability).

! Note that Figure 1 does not depict the influence of some basic
attractiveness of a location for certain groups (i.e., an attractiveness that is
independent of the distribution of agents at the location). For the sake of
readability, this notion has been left out of the picture, but it often plays a
role in reality. For instance, locations like a railway station will be visited
more often by passers-by than other locations, simply because people need
to go there to reach their desired destination. Therefore, the notion of basic
attractiveness will also be considered in this paper.
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3.2 Formalisation
To formalise the concepts that were introduced above (in italics),
a number of variable names are used; see Table 1.

Table 1. Variables in simulation model

Name Explanation

c Total number of criminals

g Total number of guardians

p Total number of passers by

c(L, 1) Density of criminals at location L at time t.

g(L, t) Density of guardians at location L at time t.

pL, 1) Density of passers-by at location L at time t.

AL, at) Attractiveness of location L at time t for type a agents:
¢ (criminals), p (passers-by), or g (guardians)

ba(L, a, t) Basic attractiveness of location L at time t for type a agents:
¢ (criminals), p (passers-by), or g (guardians)

assault_rate(L, t) Number of assaults taking place at location L per time unit.

Next, a number of equations are introduced to represent the causal
relations between these variables. Most of these ideas are taken
over from [2] (and [3]). First, the calculation of the number of
agents at a location is done by determining the movement of
agents that takes place based on the attractiveness of the location.
For example, for criminals, the following formula is used:

c(L, t+4t)= c(L, t) + - (BL,c,t)-c-c(L, 1)) 4t

This expresses that the density c(L, t + At) of criminals at location
L on time t + At is equal to the density of criminals at the location
at time t plus a constant # (expressing the rate at which criminals
move per time unit) times the movement of criminals from t to
t+At from and to location L, multiplied by At. Here, the movement
of criminals is calculated by multiplying the relative attractiveness
AL, c, 1) of the location (compared to the other locations) for
criminals with the total number ¢ of criminals (which is constant).
From this, the density of criminals at the location at t is subtracted,
resulting in the change of the number of criminals for this
location. For passers-by, a similar formula is used:

pLt+4) = p(L, ) + 5~ (BL p, 1) p-p(L, ) 4t

However, as opposed to [3], the movement of the guardians is not
(necessarily) modelled using this formula. Instead, to represent
guardian movement, different strategies can be filled in (see
Section 4).
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total number of

Next, the attractiveness of a location can be expressed based on
some form of reputation of the location for the respective type of
agents. Several variants of a reputation concept can be used. The
only constraint is that it is assumed to be normalised such that the
total over the locations equals 1. An example of a simple
reputation concept is based on the densities of agents, as
expressed below.

AL.ct) =pLt)/p
AL pt) =9l t)/g

This expresses that criminals are more attracted to locations with
higher densities of passers-by, whereas passers-by are attracted
more to locations with higher densities of guardians. This
definition of reputation is used in [3]. Although this definition is
simple, which makes the model well suited for mathematical
analysis, it is not very realistic. To solve this problem, in this
paper, the following linear combinations of densities are used®:

Alict) = fa-(1-9L)/9)+ e pL.)/p+ fs-ba(l,c,t)
BLpt) = fn-(Q-cl,)/c)+ e gL )/ g+ Fa-ba(l,p,b)

This expresses that criminals are repelled by guardians, but
attracted by passers-by. Similarly, passers-by are repelled by
criminals, but may be attracted by guardians. In addition, for each
type of agent some basic attractiveness can be defined. The weight
factors (/3,which may also be 0) indicate the relative importance
of each aspect. Again, for the guardians no formula is specified,
since this depends on the guardian movement strategy that is
selected.

for criminals
for passers-by

Finally, to measure the assaults that take place per time unit, also
different variants of formulae can be used (see [3]). In this paper,
the following is used:

assault_rate(L, t) = max(c(L, t) - p(L, t) - 7- g(L, t), 0)

Here, the assault rate at a location at time t is calculated as the
product of the densities of criminals and passers-by, minus the
product of the guardian density and a constant y, which represents
the capacity of guardians to avoid an assault. The motivation
behind this is that the maximum amount of assaults that can take
place at a location is c(L, t) - p(L, t), but that this number can be
reduced by the effectiveness of the guardians (which corresponds
exactly to the Routine Activity Theory). In principle, this assault
rate can become less than 0 (the guardians can have a higher
capacity to stop assaults than the criminals have to commit them);
therefore the maximum can be taken of 0 and the outcome
described above. Based on this assault rate, the total (cumulative)
amount of assaults that take place at a location is calculated as:

total_assaults(L, t + 4t) = total_assaults(L, t) + assault_rate(L, t) 4t

Although the model is presented here in a purely mathematical
notation, its actual implementation has been done in the agent-
based modelling environment LEADSTO [5]. This environment is
well suited for the current purposes, since it integrates both
qualitative, logical aspects and quantitative, numerical aspects,
and is compatible with the TTL checker tool for verification of
logical formulae [4] (see Section 6). Its basic building blocks are
executable rules of the format oo —» 3, which indicates that state

¥ Note that these attractiveness formulae are not normalised yet. To ensure
that the values stay between 0 and 1, each attractiveness value is divided
by the sum of the values over all locations. Moreover, the influence by
agents from the same group is not considered.



property o leads to state property P. Here, oo and B can be
(conjunctions of) logical and numerical predicates.

4. GUARDIAN STRATEGIES

This section extends the model presented above with the
possibility to specify crime prevention strategies. The idea is that,
in addition to the rules that govern the behaviour of criminals and
passers-by, the behaviour of the guardians can be specified by
selecting one out of multiple strategies.

In current practice, the crime prevention policies that are applied
by law enforcement agencies are - mostly - reactive [6, 9]. That is,
these agencies often only increase the level of guardianship at
locations where crimes have been committed in the past. As a
consequence, this often means that such a decision is made too
late, because the damage has already been done. Instead, we
hypothesise that a more anticipatory strategy (e.g., a strategy to
invest in more guardians at locations where one predicts that a hot
spot will emerge) may be more efficient.

To investigate this, we present multiple strategies for movement
of guardians (varying from reactive to anticipatory, and
combinations of the two), and analyse for a number of scenarios
which strategy yields the lowest assault rate. Most of the selected
strategies are based on [2], in which they were already tested
against three initial scenarios. In this paper, ten different strategies
are explored in total (see also Table 2):

® The first strategy is a baseline strategy. In this case guardians do not
move at all. Their density at the different locations remains stable over
time.

® The second strategy (called reactive 1) states that the amount of
guardians that move to a new location is proportional to the density of
criminals at that location.

® The third strategy (reactive 2) states that the amount of guardians that
move to a new location is proportional to the percentage of the
assaults that have recently taken place at that location.

® The fourth strategy (reactive 3) states that the amount of guardians
that move to a new location is proportional to the percentage of all
assaults that have taken place so far at that location.

® The fifth strategy (reactive 4) states that the amount of guardians that
move to a new location is proportional to the density of passers-by at
that location.

® In the sixth strategy (anticipate 1), the amount of guardians that move
to a new location is proportional to the density of criminals they
expect that location to have in the future.

® In the seventh strategy (anticipate 2), the amount of guardians that
move to a new location is proportional to the density of passers-by
they expect that location to have in the future.

® In the eighth strategy (anticipate 3), the amount of guardians that
move to a new location is proportional to the amount of assaults they
expect that will take place at that location in the future. This predicted
amount of assaults is approximated by taking the average of the
expected densities of criminals and passers-by.

® The ninth strategy (hybrid 1) is a combination of reactive 2 and
anticipate 2. Here, the amount of guardians that move to a new
location is the average of the amounts of guardians determined by
those two strategies.

® The tenth strategy (hybrid 2) is a combination of reactive 3 and
anticipate 2. Here, the amount of guardians that move to a new
location is the average of the amounts of guardians determined by
those two strategies.

To formalise these strategies, the following formula is used:

gL, t+4t)= g(L, t) + 75 oL, t) 4t
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This formula is similar to the formulae used for criminals and
passers-by, but the amount of guardians that move per time unit is
indicated by the factor ofL, t), which depends on the chosen
strategy. The different definitions of ¢ are shown in Table 2. For
example, for the baseline strategy, o(L, t)=0, which means that the
amount of guardians at time point t+At is equal to the amount at t.

Table 2. Guardian Movement Strategies

Strategy Formalisation of o(L, t)

baseline 0

reactive 1 (c(L,t)/c)-g-g(L,t)
reactive 2 aar(L,t)-g-g(L, t)

reactive 3 taar(L,t) -g-g(L, t)
reactive 4 (L, 0/p)-g-g(L,t)

anticipate 1 (c(L, )+ 72 (AL, c, ) c-cL, 1) -at)c-g-g(L, 1)

anticipate 2

(P, O+ m2-(BL, p. ) - p-p(L, 1) - 4t)/p-g- gL, t)

anticipate 3 ((c(L, t)+ n2-(B(L, c, 1) - c-c(L, 1) - At)/c +

(p(L, )+ 72-(AL, P, ) - p-p(L, 1) - 4)/p) /2-g-g(L, 1)

hybrid 1 ((@ar(L,t) - g- g(L, )+
(p(L, )+ 72 (AL, p. ) - p-p(L, 1) - AD/p-g-g(L, 1)) /2
hybrid 2 ((taar(L,t) - g-g(L, )+

(P(L, O+ 72-(AL p.Y) - p-pL, 1) - A)/p-g-g(L, 1)) /2

In the strategies reactive 2 and 3, the average assault rate aar(L,t)
and the total average assault rate taar(L,t) are calculated by:

aar(L,t) = assault_rate(L,t) / 2x.oc assault_rate(X,t)
taar(L,t) = total_assaults(L,t) / Jx.1oc total_assaults(X,t)

As can be seen from Table 2, the idea of the anticipation strategies
it that the guardians use formulae that are similar to the formulae
for movement of criminals and passers-by to predict how they will
move in the near future. Obviously, these predictions will not be
100% correct, since they do not consider interaction between the
different types of agents, but our assumption is that they may be
useful means to develop an efficient strategy.

Furthermore, different values can be taken for the parameter 12 in
the anticipation strategies. This parameter represents the speed by
which the criminals and/or passers-by move in the predicted
scenario (or, in other words, the distance in the future for which
the prediction is made). For example, by taking a very high value
for n2 in the anticipatel strategy, guardians get the tendency to
move to locations that are predicted to have a high density of
criminals in the very far future.

As mentioned earlier, the idea of having different strategies is that
the analyst can test which one performs best. A question is
however how to define the notion of a ‘good’ strategy. One
possibility (see also [2]) is to look at effectiveness, e.g., by
considering the strategy that results in the lowest crime rates
(total_assaults) as the best. However, in reality also the costs of
crime prevention play an important role. Various mechanisms to
improve guardianship exist (e.g., adding and moving security
guards, burglar alarms, fencing, lighting), but they all involve
costs [6]. Thus, instead of only measuring the amount of assaults
that result from each strategy, in the calculation of the ‘best’
strategy one should compensate for the costs involved. For this
reason, the following formula (which was not included in [2]) has
been added:

total_costs(t + At) = total_costs(t) + Zxioc o(Xit) - € At

This formula counts the total costs that are spent on crime
prevention (for all locations involved) during the simulation.
Parameter € represents the guardian movement costs per time step.



5. SIMULATIONS

To compare the different guardian movement strategies, a large
number of simulations have been performed, using different
parameter settings. In this section, five of the most interesting
scenarios and their results are discussed. These five scenarios are
described in Section 5.1. Two example simulation traces are
presented in detail in Section 5.2, and the overall results of the
simulations are discussed in Section 5.3.

5.1 Scenarios

For the simulations described in this paper, five different scenarios
were used . Each of the scenarios involves four locations (called
L1, L2, L3, and L4). To enforce the development of hot spots, in
cach scenario the basic attractiveness of the locations for passers-
by changes over time, resulting in different phases. Some
scenarios consist of two different phases, whereas others consist
of five phases. The scenarios and their consecutive phases are
shown in Table 3. Here, for each phase, the cells indicate the basic
attractiveness values of the different locations.

Table 3. Simulation Scenarios

scenario | phasel | phase2 | phase3 | phase4 | phase5

1 L1=0.25 L1=0.7 - - -
L2=0.25 L2=0.1
L3=0.25 L3=0.1
14=0.25 L4=0.1

2 L1=0.25 L1=0.7 L1=0.25 - -
L2=0.25 L2=0.1 L2=0.25
L3=0.25 L3=0.1 L3=0.25
14=0.25 L4=0.1 L4=0.25

3 L1=0.25 L1=0.7 L1=0.4 L1=0.1 -
L2=0.25 L2=0.1 L2=0.4 L2=0.7
L3=0.25 L3=0.1 L3=0.1 L3=0.1
L4=0.25 L4=0.1 L4=0.1 L4=0.1

4 L1=0.25 L1=0.7 L1=0.4 L1=0.3 L1=0.25
L2=0.25 L2=0.1 L2=0.4 L2=0.3 L2=0.25
L3=0.25 L3=0.1 L3=0.1 L3=0.3 L3=0.25
L4=0.25 L4=0.1 L4=0.1 L4=0.1 L4=0.25

5 L1=0.25 L1=0.7 L1=0.4 L1=0.1 L1=0.1
L2=0.25 L2=0.1 L2=0.4 L2=0.4 L2=0.1
L3=0.25 L3=0.1 L3=0.1 L3=0.4 L3=0.4
14=0.25 L4=0.1 L4=0.1 L4=0.1 L4=0.4

To give an example, in scenario 2, all locations start out with the
same basic attractiveness for passers-by (i.e., ba(L1,p,0) =
ba(L2,p,0) = ba(L3,p,0) = ba(L4,p,0) = 0.25). After a while (in
phase 2, which starts at time point 25), the basic attractiveness of
location L1 is temporarily increased (i.e., ba(L1,p,25) = 0.7,
ba(L2,p,25) = ba(L3,p,25) = ba(L4,p,25) = 0.1). This may be
caused, for example, because a circus is coming to town. Some
time later (phase 3), the circus moves away to another city and the
basic attractiveness of all location becomes equal again (0.25).

Other parameter settings were chosen as follows (for all
scenarios). The total population consists of 800 criminals, 400
guardians, and 4000 passers-by. Initially, these agents are
distributed equally over the four locations (i.e., each location
contains 200 criminals, 100 guardians, and 1000 passers-by). The
attractiveness settings for criminals are f4=0.4, [.,=0.6, B.s=0

™ All scenarios and parameter settings were chosen after a number of
brainstorm sessions with experts in criminology. Although the exact
numbers do not correspond to actual empirical data, they were selected in
such a way that the resulting patterns are realistic. In addition to the
simulation experiments presented in this paper, a large number of other
experiments have been performed as well (with different ratios, #locations,
and so on), but the overall trends were similar to the results shown here.

(i.e., the biggest part of their behaviour is determined by the desire
to assault, and a smaller part by the desire to not get caught,
whereas no basic attractiveness plays a role for them). The
attractiveness settings for passers-by are £,,=0.1, £,,=0.1, £,5=0.8
(to enforce a high influence of basic attractiveness). In all
strategies, the speed factors () are set to 0.5 for all agents.
Furthermore, #2=10 in all anticipate and hybrid strategies. Only
for anticipate 3 two variants are shown: one with #72=10 (called
anticipate 3a from now on) and one with #2=30 (called anticipate
3b), which turned out to improve the results for that strategy. The
value of y(the capacity of guardians to avoid an assault) is set to
1950, and the movement cost parameter £1s set to 250 (since these
values produced most realistic patterns). Finally, A4t=0.1, and the
total simulation time is 100 steps.

5.2 Example Simulation Traces

To illustrate the types of patterns that result from the simulations,
the dynamics of two example simulation traces are shown in
detail. Both traces address scenario 2.

Baseline Strategy Anticipate 2 Strategy
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Figure 2. Simulation Tracesfor Scenario 2

In trace 1 (the left column of Figure 2), the results of the baseline
strategy are depicted graphically. The results of the anticipate 2
strategy are shown in trace 2 (the right column of Figure 2). This




figure shows, from top to bottom, the total (cumulative) number of
assaults, and the amount of criminals, guardians, and passers-by at
the different locations. In all graphs, the solid red line indicates
location L1 and the dashed green line shows the results for
locations L2, L3 and L4 (these locations have the exact same
values, and are therefore shown as one single line). The dotted
blue line in the upper graphs shows the total amount of assaults,
i.e., the sum of the assaults at the four locations.

As can be seen in Figure 2, over the first 25 time points, there is
no difference between both strategies: there is a stable situation,
with an equal distribution of criminals over the four locations (and
therefore also an equal distribution of passers-by and guardians).
As a result, the amount of assaults increases linearly (and slowly).
However, after time point 25 (the moment that the circus comes to
location L1), this location becomes very attractive for passers-by
(as can be seen in the lower graphs, for both strategies). The
difference between the two strategies is that anticipate 2
immediately anticipates on this changed situation: many guardians
are sent to L1. This causes many criminals to move away from
that location. Instead, the baseline strategy does not result in any
movement of guardians. As a result, many criminals can move to
L1, and commit assaults without being stopped.

Although this is only one example scenario, it clearly illustrates
the difference between (in this case, baseline and anticipation)
strategies. Guardians that act according to a reactive strategy
mainly show behaviour that is similar to the anticipation strategy,
but are a bit more ‘hesitating’ in their actions. A more complete
comparison between the strategies is shown in the next section.

5.3 Simulation Results

All 10 strategies introduced in Section 4 have been tested against
the five scenarios (among others). Figure 4 shows for each
strategy what was the total amounts of assaults (where the
numbers of the five scenarios are accumulated). As this figure
shows, the crime rates differ significantly between the 10
strategies. The strategies reactive 1 and anticipate 1 (which react
to the current or predicted amount of criminals, respectively) do
not seem to add much compared to the baseline strategy. All other
strategies seem to be beneficial. The lowest assault rates are found
for the strategies reactive 2 (which reacts to recent assault),
anticipate 2 (which anticipates on expected passers-by) and hybrid
1 (which is a combination of these two strategies). Interestingly,
the hybrid 1 strategy is even more effective than the two strategies
of which it was composed separately. Apparently, this strategy
exploits the useful properties of both strategies.
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Figure 3. Total amounts of assaults

As explained earlier, the effectiveness of the strategies must be
weighed against their efficiency. For this reason, the total costs of
each strategy have also been counted, see Figure 4. This figure
shows that, although very effective, the reactive 2 and hybrid 1
strategies are not very cost-efficient. For obvious reasons, the
baseline strategy does not involve any costs'™.
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Figure 4. Total amounts of costs

When we want to weigh the costs of a particular strategy S against
its benefits, also a notion of benefits is needed. This is defined as
the amount of assaults that are prevented by strategy S, compared
to a situation in which the baseline strategy is used:

total_prevented_assaultss(t) =
Dx:loc (total_assaultspaseiine(X,t) - total_assaultss(X,t))

Based on this definition, the cost-benefit ratio of a particular
strategy S in a given scenario is defined as follows (where It is the
last time point of the scenario).

ratios = total_costss(It) / total_prevented_assaultss(It)

An overview of the cost-benefit ratios for the different strategies is
provided in Figure 5. Here, the baseline strategy is omitted
because it is used as a benchmark for the other strategies. It
becomes clear that, for the given scenarios, the anticipatory
strategies have the lowest cost-benefit ratio, whereas the reactive
strategies have the highest ratio.
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Figure 5. Cost-benefit ratios

' Note that only the costs for moving guardians are counted; for

simplicity, variable costs for maintenance of existing guardianship (e.g.,
depending on their job description, or work times) are ignored.



In practice, the question which strategy is ‘best’ of course depends
on the preferences of the law enforcement agency (e.g., how much
money can be invested?). However, the above results have
illustrated that the presented simulation model can give insight in
the costs and benefits of different strategies, which may provide
useful information for policy makers.

6. FORMAL ANALYSIS METHOD

As illustrated above, simulation may be a useful instrument in that
it enables the researcher to perform large numbers of (pseudo-)
experiments to explore certain questions. For example, based on
the simulation results, it could be concluded that anticipatory
strategies are usually more cost-efficient than reactive strategies.
However, these results do not provide much explanation on
individual cases; e.g., they do not shed any light on why some
strategy performs better in one scenario than in another. To
answer such questions, it is needed to study individual simulation
traces in detail. However, if the number of traces is large, is not
trivial to filter out those traces that are worth investigating.

For this purpose, this section introduces an automated approach to
classify the simulation traces based on their behavioural patterns.
The main idea is that different traces are distinguished by
checking certain dynamic properties against them, cf. [4]. These
dynamic properties are formalised in terms of logical statements,
and are automatically verified against simulation traces. A typical
example of a property that may be checked is “whether the
amount of assaults is equally spread over the different locations”.
By running a large number of simulations and verifying such
properties against the resulting simulation traces, the modeller can
separate the interesting cases from the less interesting ones within
limited time. As a next step, the interesting simulation traces can
be inspected by hand, to explain the unexpected behaviour.

For the presented model of crime displacement, a number of such
dynamic properties have been formalised in the Temporal Trace
Language (TTL) [4]. This predicate logical language supports
formal specification and analysis of dynamic properties, covering
both qualitative and quantitative aspects. TTL is built on atoms
referring to states of the world, time points and traces, i.e.
trajectories of states over time. In addition, dynamic properties are
temporal statements that can be formulated with respect to traces
based on the state ontology Ont in the following manner. Given a
trace y over state ontology Ont, the state in 7y at time point t is
denoted by state(y, t). These states can be related to state
properties via the formally defined satisfaction relation denoted by
the infix predicate |=, comparable to the Holds-predicate in the
Situation Calculus: state(y, t) |= p denotes that state property p
holds in trace 7y at time t. Based on these statements, dynamic
properties can be formulated in a formal manner in a sorted first-
order predicate logic, using quantifiers over time and traces and
the usual first-order logical connectives such as —, A, v, =, V, 3.
A special software environment has been developed for TTL,
featuring both a Property Editor for building TTL properties and a
Checking Tool that enables formal verification of such properties
against (simulated or empirical) traces. This tool can also import
simulation traces produced by the LEADSTO environment [5].
For more details about TTL, including complexity results, see [4].

Various dynamic properties for the model have been formalised in
TTL. Below, a number of them are introduced, both in semi-
formal and in informal notation (note that they are all defined for a
given trace 7, a time interval between tb and te, and an integer n):

531

P1 - Maximal Adaptation Time
For each time point t (between tb and te) on which the basic attractiveness
of some location | increases, it takes at most n time points until the assault
rate is back to the level it had before t.
P1(y:TRACE, tb,te:TIME, n:INTEGER) =
Vt:TIME Vx1,x2,y1:REAL VI:LOCATION
[tb<t&t<te &
state(y, t) |= has_basic_attractiveness_for(l, passers_by, x1) &
state(y, t+1) |= has_basic_attractiveness_for(l, passers_by, x2) &
x2 > x1 & state(y, t) |= assault_rate_at(l, y1) ]
= [3d:INTEGER 3Jy2:REAL
state(y, t+d) |= assault_rate_at(l, y2) & 0<d & d<n & y2<y1 &
[Vy3:REAL VI2:TIME t <t2 & t2 <t+d &
state(y, t2) |= assault_rate_at(l, y3) = y3 > y1] ]

This property can be used to find out how long it takes until a
particular hot spot has disappeared. This can be useful in cases
where policy makers have strict constraints in the amount of time
they allow a hot spot to persist. The results of checking this
property against the simulated traces are displayed in Figure 6.
This figure shows, e.g., that reactive 2 is very quick in eliminating
the hot spot in scenario 1, but is much slower (also compared to
the other strategies) in scenario 4, involving multiple hot spots.
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Figure 6. Maximal adaptation times
Another relevant property is the following:
P2 - Equal Spread of Assaults

For each time point t (between tb and te), the assault rate at the largest hot
spot is at most n% of the assault rate at the smallest hot spot.

P2(y:TRACE, tb,te:TIME, n:INTEGER) =

Vt:TIME Vx1,x2:REALVI1,12:LOCATION

[ib<t&t<te &

is_largest_hot_spot_at(I1, t, v) &

is_smallest_hot_spot_at(I2, t, y) &

state(y, t) |= assault_rate_at(I1, x1) &

state(y, t) |= assault_rate_at(12, x2) ] = x1 < (1+n/100)*x2

In this formula, is_largest_hot_spot at is an abbreviation, which is
formalised as follows (and similarly for is_smallest_hot_spot_at):

is_largest_hot_spot_at(I1:LOCATION,t:TIME,y:TRACE) =
Ji:REAL state(y, t) |= assault_rate_at(l1, i) &
VI2:LOCATION Vi2:REAL

[state(y, t) |= assault_rate_at(12, i2) = i2<i ]

Property P2 can be used to select strategies that enforce small
differences between the crime rates of different locations. Due to
space limitations, the checking results are not shown here, but
they were comparable with the results shown in Figure 3. Le., the
strategies reactive 2, anticipate 2, and hybrid 1 yielded the



smallest differences (with anticipate 2 as absolute winner: this
strategy always kept the difference in assault rates below 10).

Finally, property P3 can be used to find out the maximal rate at
which guardians move for each scenario. Again, the results are not
shown here, but they were comparable with Figure 4 (although
with small differences, since ‘maximal’ is not the same as ‘total’).

P3 - Maximal Movement Rate

For each time t (between tb and te), the total movement rate is at most n.
P3(y:TRACE, tb,te:TIME, n:INTEGER) =
Vt:TIME Vx:REAL
[tb <t & t<te & state(y, t) |= total_movement_rate(x) = x < n]

To conclude, the formal method presented here can be used as an
addition to the simulation model, in order to find more detailed
properties of individual simulation traces that can not (easily) be
verified by looking at the simulation runs. Moreover, besides
simulation traces, the checker tool can also import traces that are
constructed from empirical data, if these are available. This way,
the method can be exploited to analyse existing displacement data.

7. DISCUSSION

Computational modelling of crime displacement is a hot topic
since a number of years. Various modelling approaches have been
taken, with different perspectives and goals [1, 3, 7, 11, 12, 15,
17]. The current paper extends the state-of-the-art by proposing an
agent-based framework to analyse displacement processes. The
framework consists of a simulation model to compare crime
prevention strategies, and a formal method to analyse detailed
properties of the strategies. Using this framework, various crime
prevention strategies were analysed under different circumstances.
The results suggest that a hybrid strategy is most effective, but
that purely anticipatory strategies are more cost-efficient.

Despite these encouraging results, they should not be over-
generalised. They were achieved in simulations that used several
specific parameters and simplifying assumptions. For example, in
practice it is not always feasible to determine exact numbers for
the attractiveness of a location for certain groups, or for the
amount of assaults that are performed. Nevertheless, the results of
such simulations may be useful input for policy makers, in order
to elaborate their thoughts about efficient strategies (cf. [10]), as
also confirmed by our colleagues in the Department of Crimino-
logy. In that light, an advantage of comparing multiple strategies
is that one can select the most feasible one in a particular case.

As a first step to support such policy making, for future work it is
planned to incorporate the presented simulation model within an
intelligent support agent. Such an agent will use input from
databases on citizen activities and crime records, in order to
provide the police advice on how to handle in a given situation.
Another further extension that will be addressed is the use of more
intelligent strategies for the criminals. Although the currently used
formula approximates (for large numbers) the behaviour of
criminals in the real world, it would be interesting to explore how
a more sophisticated formula would influence the results.

8. REFERENCES

[1] Bosse, T. and Gerritsen, C. (2008). Agent-Based Simulation of
the Spatial Dynamics of Crime: on the interplay between
criminals hot spots and reputation. In: Proceedings of
AAMAS’08, ACM Press, 2008, pp. 1129-1136.

[2] Bosse, T. and Gerritsen, C. (2009). Comparing Crime

Prevention Strategies by Agent-Based Simulation. In: Proc. of

532

[3]

[9]

[10]

[11]
[12

[

[13]

[14]

[18]

[19]

the 9" IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, IAT’09, IEEE CS Press, 2009, pp. 491-496.

Bosse, T., Gerritsen, C., Hoogendoorn, M., Jaffry, S.W., and
Treur, J. (2008). Comparison of Agent-Based and Population-
Based Simulations of Displacement of Crime. In: Proc. of the
8" IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, IAT’08, IEEE CS Press, 2008, pp. 469-476.

Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A.,
and Treur, J. (2009). Specification and Verification of
Dynamics in Agent Models. International Journal of
Cooperative Information Systems, vol. 18, 2009, pp. 167-193.

Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J. (2007).
A Language and Environment for Analysis of Dynamics by
SimulaTiOn. In: Int. Journal of Artificial Intelligence Tools,
2007, vol. 16, issue 3, pp. 435-464.

Brand, S. and Price, R. (2000). The Economic and Social costs
of Crime. Home Office Research Study 217, London.

Brantingham, P.L., Glasser, U., Singh, K., and Vajihollahi, M.
(2005). Mastermind: Modeling and Simulation of Criminal
Activity in Urban Environments. Technical Report SFU-
CMPTTR-2005-01, Simon Fraser University.

Cohen, L.E., and Felson, M. (1979). Social change and crime
rate trends: a routine activity approach. American Sociological
Review, vol. 44, pp. 588-608, 1979.

Eck, J. E., Chainey, S., Cameron, J. G., Leitner, M., and
Wilson, R. E.. (2005). Mapping crime: Understanding hot spots.
National Institute of Justice, U.S. Department of Justice, 2005.
URL: http://www.ojp.usdoj.gov/nij/pubs-sum/209393.htm.

Elffers, H., and Baal, P. van. (2008). Spatial Backcloth is not
that important in simulation research: An illustration from
simulating perceptual deterrence. In: Liu, L. and Eck, J. (eds.),
Artificial Crime Analysis Systems, pp. 19-34.

Groff, E.R. (2005). The Geography of Juvenile Crime Place
Trajectories. Ph.D. Thesis: University of Maryland.

Hayslett-McCall, K., Qui, F., Curtin, K.M., Chastain, B.,
Schubert, J., and Carver, V. (2008). The Simulation of the
journey to residential burglary. In: Liu, L. and Eck, J. (eds.),
Artificial Crime Analysis Systems, pp. 281-300.

Herbert, D.T. (1982). The Geography of Urban Crime.
Longman: Harlow, England, 1982.

Liu, L. and Eck, J. (eds.) (2008). Artificial Crime Analysis
Systems: using computer simulations and geographic
information systems, Information Science Reference, 2008.

Liu, L., Wang, X., Eck, J., and Liang, J. (2005). Simulating
Crime Events and Crime Patterns in RA/CA Model. In F. Wang
(ed.), Geographic Information Systems and Crime Analysis.
Singapore: Idea Group, pp. 197-213.

Mamalian, C. and La Vigne, N.G. (1998). The Use of
Computerized Crime Mapping by Law Enforcement: Survey
Results. Washington DC: National Institute of Justice.

Reis, D., Melo, A., Coelho, A.L.V., and Furtado, V. (2006).
Towards Optimal Police Patrol Routes with Genetic
Algorithms. In: Mehrotra, S., et al. (eds.), ISI 2006. LNCS
3975, pp. 485-491.

Sherman, L.W. Gartin, P.R., and Buerger, M.E. (1989). Hot
Spots of Predatory Crime: Routine Activities and the
Criminology of Place. Criminology, vol. 27, pp. 27-55.

Skogan, W. (1986). Fear of crime and neighborhood change. In:
Reiss, A. J., Jr., and Tonry, M. (eds.), Communites and Crime
(Crime and Justice 8), Univ. of Chicago Press, pp. 203-229.



